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ABSTRACT

The free lateral vibration of a nonlinear viscoelastic beam-column
subjected to an initial compressive axial load is considered.

The constitutive law is formulated with a linear elastic term and
with power functions of stress in the transient and steady creep
terms, and is of the nonlinear generalized Kelvin type.

By assuming that the stress caused by the oscillation is of much
smaller magnitude than the initial stress, the problem is linearized.
The problem is analyzed for five special viscoelastic models using
small deformation theory, and numerical results are discussed for
a stainless steel alloy. ’
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1, INTRODUCTION

As notcd by Hoff (l), creep in metals must have a damping effect on
mechanical vibration, since it absorbs energy. If one is considering

a vibration problem in a temperature range for which creep may be
present, the damping duc to creep should be included in the analysis.,
Cozzarelli, Wu and Tang 2) considered a beam constructed of a ma-
terial which may be represented by ~ nonlinear Maxwell-Kelvin model,
and which was subjected to a free lateral vibration while under initial
axial tension, In this paper we extend their analysis in two ways;

the first of which is to employ a more general viscoelastic law of the
nonlinear generalized Kelvin type in order to provide greater flexibi-
lity in the fitting of experimental data. And secondly we extend the type
of loading to include the case of initial axial compression., The growth
or decay of damped vibration under compression is a problem of prac-
tical importance in studies of structural reliability and safety, and
thus we give particular attention to this aspect of our study. Creep
collapse of a fuel element in a nuclear reactor is an example of such
problems which is of current interest.

The particular case considered here is - acar viscoelastic beam-
column which is simply supported and uncc. a initial axial compres-
sive load. The beam-column is assumed to be initially straight and of
an isothermal homogeneous medium with a rectangular cross-section.
By assuming that the initial stress increment is of much higher mag-
nitude than the stress increment caused by the oscillation of the beam,
the problem is linearized in a manner analogous to that in ref, 2.

The incremental approach to the theory of dynamic creep stability in
columns has been developed in a number of papers; of these we men-
tion in particular Rabotnov and Shesterikov(3' 4), Jahsman and Field( 5),
Jahsman'”/, and Distéfano and Sackman ¢ . The present development
more closely parallels that in ref. 7-8, since it is based on a nonlinear
viscoelastic relation rather than on a mechanical equation of state as in
ref. 3-6. Our specific goal is to demonstrate in detail how for actual
values of the creep parameters one may readily construct the complete
incremental displacement solution for rather general constitutive rela-
tions primarily by means of simple hand calculations.

The governing displacement equation is derived in Section 2 using
small deformation theory, and the solution of this equation for a non-
linear Maxwell-Kelvin-Kelvin (or simpler) material is discussed in
Section 3, This letter section employs the property of physically small
damping due to creep to develop simple but accurate estimates to the
roots of the characteristic equations. Numerical results for a stainless
stecl are considered in Section 4, where we examine the effects of
steady creep, slow transient creep and rapid transient creep.
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2. DERIVATION OF THE GOVERNING EQUATION

2.1 Constitutive Law

A one-dimensional constitutive law of the nonlinear generalized Kelvin
type, similar to the law discussed in detail and used in ref, 9, will be
employed here in its integral form

: T i N -T/z'i T %G 1z

T i
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(1)

Here, T, €(T) and 7(T) represent time, strain and stress respectively
and E is the modulus of elasticity; A is the steady crcep parameter and
n is the steady creep power; Zi are retardation times, M. are transient
creep parameters and q; are transient creep powers; and sgnO(T) is the
usual signum function., By setting N=1 in eq. (1) we arrive at the consti-
tutive equation used in ref, 2, except that here the use of the sighum
function enables us to consider negative stresses.

Consider a material with an initial constant stress 7 (positive or nega-
tive), subjected to a small disturbance at T=T,. This disturbance is
translated into a small additional increment of stress, i.e.

7(T) = 7+ £T(T) (2)

where f(T) is the stress increment and £ is a small quantity,
It then follows that

R,
| 71" sgn 7 = |(7'0|nsgn(7'°+n|o'oln 8T & 4 (3a)

Q; Qj qi-1 3b
ol " sgnor= 7, sgn(7'0+qi|(7'ol 5 £+ vsnis (3b)

Also, as a result of the disturbance the strain assumes the form

€(T) = € (T) + €£E(T) +.... (4)

Substituting eqs. (2)-(4) into eq. (1), subtracting the relation for the
initial state, and rectaining terms of order &€, we obtain the following
linear constitutive relation in the increments:

-1
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~ Tt
. T(T e dT’ T>T, (5)
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I2q. (5) may also be expressed as thec memory integral

T n-1 N q.-1 - .
n |0} ! -(T-T9/T.
E(T) = [é— + ——on—(T-T’) + E 11—"-———-(1 £ ‘)]
A i

q.

T; i=1 /Li

o ’

—é;é)‘dT’ T>T] (6)

where we have used &(T;) = 0,

2.2 Governing Equation for Lateral Vibration of an Axially Creeping
Beam-Column

As a specific example we consider the vibration of an initially straight
Euler-Bernoulli beam-column, which is subjected at T=0 to a pres-

cribed axial force P_ (tensile or compressive) followed later by a t
small lateral disturbance at T=T _. Using the perturbation technique

employed in obtaining eq. (6), the classical strain displacement and

equilibrium relations for such a beam-column yield the following rela- ’
tions in the first order terms:

Zc-l
EicHya Ly B TE (72)

2x°
V2 M(X, T) PV(x,T) . WX, T)
. :2 =P . ’2 -p ’ ’2 + W(X, T) (7v)
X X T
T » T;

In eqs. (7), X is the neutral axis of the beam-column which vibrates
in the XY plane, V (X, T) is the lateral displacement, M = -f TYdA is
the bending moment for a beam-column with cross-section A, p is the
linear density, and W is the lateral load which will be used to deter-
mine the initial conditions of the free vibration,

For convenience, we introduce the nondimensional quantities
T-T -
X = & t= ° w T*
’ g ’

el 8
= o &

Here, V* is some convenient constant reference displacement, L is
the length of the beam, T is a convenient factor which has the dimen-
sion of time, and v, x, t and w are the non-dimensional lateral dis-
placement, axial coordinate, time and lateral load, respectively,

Combining eqs. (6), (7) and (8) we finally obtain the governing equation
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and where the second moment of area is I=.&YZdA. Note that the non-
dimensional force a has the same sign as Po’ whereas b, ¢, d. and ji

are all positive nondimensional material parameters. Also note that as

a result of material nonlinearity the parameters c and d; depend on | Pol .

In Section 3, eq. (9) will be anaiyzed for five different models. These
models are, in order of decreasing complexity, nonlinear Maxwell -
Kelvin-Kelvin [(Z.+® (d; and j;—0) fori > 3], nonlinear Maxwell-
Kelvin [7;+e(d;and j; = 0) for i » 2] , nonlinear standard solid
L 'C ~ oo (d and j;= 0) for i3 2 and A= (c +0)], nonlinear Maxwell
C ‘t' - o0 (d and j; + 0) for i 3 1] and linear elastic [ 7] -oo-(d and j; = 0)
for i 31 and )—v-o(c —+ 0)). The differential form of eq. (9) for the non-
linear Maxwell-Kelvin-Kelvin (M-K-K) model is obtained via successive
differentiation as

1 37v J1+J2 b6v 132 bSV

bt e’ L T

st _ bsv + '33w
ax‘*at ’bx20t3 bts 3t3

o ]

4 4 2
- ) a dv v A w

+.(°+d1+d2+"l+-‘z)(b X2y, z)
ox dt At At

3 3
d J S a dv Av . dwW
+[Jl(c + dz) + JZ(C + dl) + Jl_)z] (b axzat - at3 + at)

2
adv A% 3
+c132(;-372-;?-w) tyo0 (11)

The remaining differential forms for the other special models are
easily obtained from the limits listed above,
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Next, the nondimensional loading function is expressed in the form

w = glx) 7 (t) (12)

where g(x) is a function of x, and 7(t) is a doublet function which
cxcites a free vibration for t 2 0. For the solution of eq. (11) with
forcing function (12), it is convenient to set w=0 in eq. (11" and use
initial conditions at t=0%, For these conditions we integrate eq. (11)
successively between t=0" (where all quantities vanish) and t=0% and
obtain

+
v(x,0") = g(x) (13 a)
%;—’(x.o+)=(, (13 )
2 4 2
0 v + 1 d g(x[ a d g{x)
——Z(x,o)_-g T 'y > (13 ¢)
t dx dx
R R ek e
_‘—(X,O ) - —— (13 d)
e b 4
t dx
v, 4 1 %00 2adbaln
T e ol e e S
ot b~ dx b~ dx
4
1 i_z_ . . 21d g(x)
ey [b - (d131+d212)-(c + d1+d2) ] dx4 (13 e)

We see that the beam-column has in effect been deformed laterally
t=0% in the form of g(x) and then released from rest,

3, SOLUTION OF THE GOVERNING EQUATION

3.1 The Characteristic Equation

As previously noted, we shall consider the free vibration of a simply-
supported nonlinear Maxwell-Kelvin-Kelvin (M-K-K) beam-column
(and simpler). Noting the boundary conditions

v(0,8) _ w1,y _

sz p) x2

v(0,t) = v(1,t) = 0 (14)

and the fact that all the space derivatives in governing eq. (11) are of
even order, we shall take g(x) of eq. (12) in the convenient form

g(x) = sin (mTx) (15)

where m indicates the mode of vibration. For m=1 we sce from eq.(13 a)
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and (15) that v(1/2, O+) = 1, which in turn requires for this case that
v*in eq. (8) equal the initial lateral displacement at mid-span,

A solution to eq. (11) then follows simply as

v(xz,t) = %(t) sin (m¥ x) (16)

where T(t) is a function of time. Substituting eq. (16) into eq. (11)
with the load w=0, we obtain an ordinary differential equation in T(t) as

+ Lb(jlc +i,c + i, +dyip +dy) +a+ I]Tr' (t)

+ Jlszc+a.(c+d1 +d2+J1 +j2)+j1 +32]T(t)

o . o . : L=
E - + La.(ch +i,c +id, tdyi, + dle) + JIJZ] T (t)
' +§13,3¢T(1)=0 (17)

where (.) indicates d/dt and for mode m

5: ;2;-1-)= 24 (18)
T m T m

The characteristic equation for the nonlinear M-K-K material is ob-
tained by substituting

- t
T(t)=e® (19)
into eq. (17). From this point on we shall confine our attention to the
case of initial compression (5 = -|a| ), for which the characteristic
equation is given by
BEC4+blctd +d, +j +i)gt
B AInecEe, by Ty agie
- : i : g - 3
+ [b(ch + e + iy +dydy + dyjp) -1al + 1] 13
Ty - - . . X : 2
+ [Jljzbc -13l(c +4d) +d, +j) +],) i) +Jz]g
+ [-\al,( et e jpdy +dgd, +dyiy) + jljz] £
d kR 5-i
-igy1Ele = Ly =0 (20)
i=0
where the e(i are the six coefficients in this fifth order equation. The
characteristic equation for the simpler models are obtained by allow-

ing the appropriate creep parameters to tend toward zero, as described
in Section 2,2. For convenience, the coefficients “i in the characteris-
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tic equations for all of the models arc summarized in Table 1, Note
that in the summation

P ;
p-i
IR
i=0
the quantity p is the order of the equation, which equals 2, 3, 3, 4 and
5 for the E, M, S-S5, M-K and M-K-K materials respectively,
Having obtained the roots to the various characteristic equations, the

general solution to eq. (11) for unrepeated roots then follows from egqs.
(16) and (19) as

P
gt
vix,t) = E c.e = sin(mTx) (21)
i=1 .
the ¢, are constants which may be determined from initial con- '

.ions, eq.1 (13).
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3.2 Discussion of Roots and Solutions for Initial Compression

In this scction we examine the nature of the roots to the five charac-
teristic cquations listed in Table 1, and also discuss the correspond-

ing solutions in accordance with eq. (21). Reginning with the elastic
material we see that the two roots are imaginary for ]al<1 and real

(one positive) for [al> 1. Thus the solution for 1al > 1 exhibits expo-
nential growth, and we recognize the valuelal =1 [i.e. |P | = ZTI'ZLI/LZ
via eq. (10) and eq. (18)] as the critical buckling load for an clastic
column. On the othcr hand, the solution for |al<l oscillates with the
nondimensional natuial frequency

w = (l_—i@fﬂ ' | (22)

which decreases as the initial load increases. Since actual structures
are usually designed to operate at loads below this critical load, we
shall assume that for all the models

1al < 1 : (23)

Now we consider as a group the four other viscoelastic models listed

in Table 1, and remark that the damping due to creep is physically
small (see ref, 2). Accordingly, the solutions for all these viscoelastic
models will contain two terms which oscillate at essentially the elastic
frequency w as given by eq. (22) and decay slowly with time. Such terms
correspond to two roots with negative real parts

El ,® -ptiw where w>p (24)
which implies that the creep parameters are of small order B when
compared with w, If we substitute eq. (24) with (22) into the character-
istic equation for the nonlinear M-K-K material and ignore terms of
higher order, we find that the imaginary part is identically satisfied
while the real part yields the relation

zc+d1+dz 3
P® 20 ) )

Eq. (25) applies equally well to the nonlinecar M-K material (d =0),

the nonlinear S-S material (c= d, =0), and to the nonlinear M ma.tena.l
(,=d,=0).

The remaining p-2 roots will now be examined for the various models
with the aid of Descartes ” rule of signs, We see from Table 1 that in
all four models the coefficients & and &X; are positive, and x, is also
positive due to inequality (23). For the Maxwell material we note the
&3 is always negative, and thus the remaining third root for this mate-
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rial must be positive real, and the total solution contains two decay-
ing oscil.atory terms and one exponentially growing term. We may
obtain a good estimate for this positive real root by solving the cha-
racteristic equation with b = 0, since this is equivalent to dropping
the inertia and the associated oscillatory terms. In so doing we obtain |

L lalc :

For the standard solid material we see that X3 may be positive or |
negative, depending on the value of fa\. Thus, if

Val » '5.c where 'ic = jl/(d1+j1)< 1 . (27)

the remaining third root must be positive real, whereas if |al<a
this root is negative real, The estimate to this rwot, as obtained 1():y
setting b=0, is given by

=
3 15 {28}

which exhibits the above mentioned behaviour in regard to sign. In con-
» trast to the M material, the exponential term in the total solution for the
} S-S material grows in time only if the load is large enough for incquality
(27) to be satisfied. Thus for this material there is a second critical
load [Pocl defined by |al =3c, which upon using equations (10), (18) and
(27) yields the nonlinear expression in|P__|
1-1

q
'Poc‘ Lz {ql ‘ poc/AI 1 ]
=1
m¥I /thl

The quantity in brackets is the effective reciprocal elastic modulus of
the linear spring in series with the nonlinear Kelvin element (with Tl =0)s.
Note that |Py.| is less than the critical elastic buckling load, and also
that due to material nonlinearity ithe elastic modulus of the Kelvin ele-
ment depends on | P, itself.

(29)

Consider next the nonlinear Maxwell-Kelvin material, where there are
two roots in addition to the complex pair given by eq. (24). Again exa-
mining Table 1, we see that whereas X, is always negative, 0(3 may be
either positive or negative. However, in both cases there is only one
variation in sign, and thus there is one positive real and one negative
real root. Setting b=0 in Table 1, we obtain the following estimate to
these two real roots 1/2

¢ i . 12 —— « 112 - yems s
X -3 HEN(etd )"+ {[5) -1a1(erd, +5)) ] T+ 4(1-130)1E1 e
334 2(1 R |3.|)

(30)
$,>0,§,<0
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which simplifics to eq. (26) and c¢q. (28) when the appropriate creep
paramecters are sct equal to zero,

Finally, we consider the nonlinear Maxwcll-Kelvin-Kelvin material,
for which there are three roots in addition to the two previously dis-
cusscd complex roots.__II &3 in Table 1 is negative, then for the cor-
responding valuecs of |a| one can prove that &4 must also be negative,
However, if «3 is positive, then X, may be cither positive or negative.
For these three cases there is still only one sign variation in the coef-
ficient sequence, and thus there is again one and only one positive real
root. The other two roots may in principle be either both negative recal
or a second complex conjugate pair, but our numerical calculations
have yielded no characteristic frequency other than the one near the
elastic frequency (see Section 4). The three real roots are estimated
by the solutions to the cubic equation

5| 5 (erdy ta 2+[. . (j1°+j2°+d132+d231)|al]
E*+nhY, - 77 JfE J1l2” 1 -13|

Jjiyclal

=D (31)

£,>0 E,,5.<0

An examination of the test function for Cardan’s formula confirmed the
observation that, for typical values of the parameters, the threce solu-
tions to eq. (31) are in fact real. Thus, the overall behaviours of the
M-K-K, M-K, S-S (with |2l >3_) and M materials are essentially the
same, i.e. there is an initial period of decaying oscillaticn which is fol-
lowed by a period of exponential growth.

For convenience, the character and the estimates of the roots for the
various models are summarized in Table 2, The actual evaluation of
the coefficients c; in the solution [eq. (21)7] from these roots is some-
what tedious for the more general models, and thus we will obtain the
results for the M and S-S models only, Utilizing Table 2 we write the
displacement solution for both these models as

A &t
, sin wt)e pt+ c e g ] (32)

v(x,t) = sin mTx [(clcos wt + ¢

Also, initial conditions (13 a-c) with (15) and (22) yield
2
2
aa_: (x,0) =0, =L(x,0") = -wsin mrx (33)

v(x, 0+) = sin mmrx,,
2
ot

Evaluating c,, ¢, c, in eq. (32) from conditions (33), we obtain the
complete solution for the M and S-S models as
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(x t)= sin 1n7r\

> {[(§3+2{5¥ +w ) coswt +

(§3+{;) 4» it
e-(M + /320 g } (34) :

BESH 5 pi0) ]
- sinwt

Note that although the coefficient cy is very small (since B« w) it is
always positive, and thus for positive é; the displacement for t large
is in the same direction as the initial dlspla,cement

For lincar viscoclastic materials it is well known that the S-S material

is characterized by two critical loads, and that for materials with a

long-time viscous behaviour (e.g. M, M-K, M-K-K) the lateral displa-

cement always grows with time (e. g. see Distéfano, ref, 10). Accord-

ingly, the results obtained here concerning the roots for a particular

nonlinear material are consistent with previously established results ]
from the theory of linear viscoeclasticity., The roots which we have es- ;
timated in this section will be obtained by numerical computer calcu-

lations in the next section for a stainless steel beam at two levels of !

load and temperature,

4, NUMERICAL RESULTS -

In order to illustrate the roots and solutions discussed in the previous ‘
section, we consider a 36 in, long stainless sicel (type 316) beam with
a rectangular cross-section which is 2 in. wide by 3 in. deep. For the
axial force P0 and the temperature 8 we consider two cases, i.e.

Py = -39 000 1b with 9= 1300°F and P, = -60,000 1b with 8 = 1500°F,
where we shall soon see that the latter case satisfies |2l > EC [ see
eq. (27)] while the former satisfies (al<3a_,. The material properties
P> mX, qp, My, T, as listed in Table 3 (with lb, hr and in. units) are
identical with those obtained in ref. 2 for a M-K model using the data
of Garofalo et al. ’ 12). The values of E listed in Table 3 for the two
temperatures were obtained by extrapolation from data at lower tem-
peratures given in ref, 13, and they are slightly less than those used
in ref. 2.

It remains for us to obtain some values for q;, M4,, 2'2, i.e. the creep
parameters in the second Kelvin element of the M-K-K model. Reexa-
mining the data in ref. 11,12 we see that the relationship between the
"initial" strain and the stress is clearly nonlinear and greater than the 5
calculated linear elastic strain. We assume here that the difference
between this initial strain and the calculated linear elastic strain is a
time-dependent strain due to rapid transient creep. In the absence of
more detailed data we set q; = q) and Z’ =4 x10° 4, and then calcu-
late 4, from the data in ref. 11,12 at stresses less than 10,000 psi.
Although these estimated values are rather crude, they serve the pur-
pose of enabling us to illustrate the effect of rapid transient creep. All
matcrial parameters for both temperatures are listed in Table 3.

—— - — -—M
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TABLE 3 - Material Propertics

8 (°F)
130C 1500
p, 10710 wns?/in? 3.45 3.45
E, 107 1b/in? 2.0 1.5
n=gq, =q, 3.64 3.50
A, 10% 1b/in2-prl/n 19,18 7. 86
I 10% 1b/in? 3,10 2.
Jiz, 10% 1b/in? 7.45 5.26
Ty = T, x 10* 333 2¥.7
TABLE 4 - Nondimensional Constants
P_ = -30,000 1b P_ = -60,000 Ib
& =1300°F e = 1500°F
(al 4,377 x 1072 1.167 x 10-1
b 8,566 x 10™" 1,142 x 10°°
c 6.943 x 107° 1.071 x 10>
dy 1,585x 107> 4,925 x 1072
d, 6.516 x 103 2.013
jp=i1 x 10 8.342 x 1072 1.280 x 107}
W 5.006 x 1072 2.592 x 10-3
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For the evaluation of the nondimensional material constants from

eqs. (10) and (18) we select m=1 (first mode) and T* = 1/3600 hr,
which converts real time scale 1'-T, from hours to scconds [eq. (8)1.
Material constants lal, b, c, dy, dp, jj, jZ plus the critical load 5.c
leq. (27)] are listed in Table 4 for the two previously mentioned cases
of load and temperaturc. Note that for Py = -30,000 1b at ®= 1300°T we
have ial< a_< 1, whereas for Py =460,0001b at ©= 1500°F we have
acs jal <1, Thus, while both cases are below the critical linear clas-
tic load as required by eq. (23), orly the former case is also below

the additional critical load for a standard solid matecrial,

Using the nondimensional constants listed in Table 4, the roots to the
characteristic equations given in Table 1 were obtained by a program

on a high speed computer, The roots for P, = -30,000 1b at © = 1300°F
are presented in Table 5, and the roots for P, = -60,0001b at & = 1500°F
are given in Table 6. When these numerically computed roots are com-
pared with the simple estimates summarized in Table 2, we find that the
estimates are remarkably accurate and in fact agree with the computer
obtained roots to four significant figures. Finally, as an illustrative case
we give below the complete numerical solution for the M model at

P = -60,000 1b with € = 1500°F as obtained from eq. (34) and Table 6:

v(x,t) = sin Tx{4. 755 x 10713 exp(1.416 x 104 t) + exp(-6. 064 x 10%¢)
» [cos(879.4 t) +6.896 x 10-7 sin (879.4 t)1} . (35)

The deflection solutions based on the roots listed in Tables 5 and 6 are
in complete conformity with the predictions of Section 3. 2. As expected,
all solutions contain two terms which oscillate at the elastic frequency w
[eq. (22)], although the sinwt term is negligible in the present exam-
ple since the motion starts from rest [ e.g. see eq. (35)]. As predic-
ted by eq. (25) for B, the rate of decay of these oscillatory terms in-
creases as the load and temperature increases and as additional creep
components are added to the model. The material with the larger va-
lues of | Pyl and @ (Table 6) and with the rapid transient creep terms in-
cluded (i. e, M-K-K) exhibits sufficient damping (B = 1,143) to cause
complete decay of the oscillatory terms over a period of several seconds.

Examining the real roots in Tables 5 and 6, we see that as predicted
only the S-S material at the lower values of |Po,l and © (Table 5) does
not have an associated positive real root, In this one case the perturbed
displacement tends toward zero as t =+%, and thus this material under
these conditions may be termed ''stable'. In the other seven cascs the
perturbed displacement tends toward infinity as t-»oo, and accordingly
these may be considered ""unstable", One can show that the coefficient
of the exponentially growing term is always positive as in €q.(35), and
thus in these cases the column "collapses" (after a period of decaying
oscillation) in the same direction as the initial displacement.
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TABLE 5 - Roots for the Various Models at

P, =-30,0001b 6 =1300°F
Mate - gl.z =B 219 g3 g4 55
rial A w
E i 1.057x103 i A g
M [3.630x107% 1, 057x103 | 3.178x1077 & 2
S-5 | 8.283x10-6| 1.057x103 | -1, 085x10-7 . .
M-K |1.192x107°] 1.057x103 | 6.301x10"7 | -4.208x10-7 ¥
M-K-K | 3.450x1073] 1.057x103 | 6.628x10-7 | -8,117x10-3| -4, 148x10-7
TABLE 6 - Roots for the Various Models at
o TR P_ =-60,0001b ©=1500°F
Mate - g1,z =-ptiw g; $4 g5
rial
/b w
E - 8.794x10% « & 3
M | 6.064x107%| 8.794x10% | 1.416x107% A 2
s-s | 2.788x1073| 8.794x102 | 6. 380x10-% 5 g
M-K |3.394x107>| 8.794x10%| 7.819x10"% | -2, 318x10-6 4
M-K-K| 1.143 8.794x10% | 1,396x107! | -7.371x107% | -2.254x107®
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5. CONCLUDING REMARKS

e rRTCATH

We have demonstrated in detail how one may use simple hand calculations to
construct the complete incremental displacement solution for a vibrating
nonlinear viscoelastic beam under initial axial compression. Solutions
were obtained for rather general constitutive relations, including those
with the long-time viscous behaviour which is characteristic of metals

at high temperatures. For such cases the lateral displacement always
grows with time, even if the load is less than the critical load. The
solutions obtained may be used to estimate a critical time at which the
lateral displacement exceeds a prescribed acceptable value.
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APPENDIX - LIST OF SYMBOLS

a, b, c, di’ ji nondimensional material constants, eqs. (10) ﬁ

a, b nondimensional material constants for mode m, eqgs. (18) J

Ec nondimensional critical load for standard solid mate - q
: rial, eq. (27) |
E A cross-sectional area of beam

< constants of integration, eq. (21) ;

E modulus of elasticity 1

E small quantity i

g( x) space dependence of nondimensional loading function,

eq. (12)

1 second moment of area

L length of beam

m vibration mode number

M(X, T) bending moment

n creep power, eq. (1)

N number of Kelvin elements

P order of characteristic equation, Table 1

Po initial axial force on beam

Poc critical load for standard solid material, eq. (29)

q creep power of i-th nonlinear Kelvin element, eq. (1)

t nondimensional time, eqs. (8)

) time

T* constant reference time, eqs. (8)

To time at beginning of disturbance %

T(t) function of time

v nondimensional lateral displacement, eqs. (8)

A\ lateral displacement

v* constant reference displacement, eqs. (8)

w(X, T) lateral load on the beam

w(x, t) nondimensional lateral loading, eqs. (8)

x nondimensional axial coordinate, eqs. (8)

X centroidal axis of beam

Y,Z coordinates in cross-section of beam
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List of Symbols (continued)

B

€

n(t)
)
P}
M

3
P
o
(4
w1

o

(
(
(

N Nt N

magnitude of real part of complex roots, egs. (24)
and (25) -

strain’

doublet function

temperature

steady creep parameter, eq. (1)

transient creep parameter of i-th nonlinear Kelvin
element, eq. (1)

root of characteristic equations, Table 1 -
linear density :
stress

retardation time of i-th Kelvin eiement, eq. (1)
nondimensional frequency, eq. (22)

indicates initial value during interval T< T
indicates increment due to lateral disturbance

indicates d/dt
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